Proses Data Mining


Fase-fase dimulai dari data mentah dan berakhir dengan pengetahuan atau informasi yang telah diolah, yang didapatkan sebagai hasil dari tahapan-tahapan berikut:
  1. Data Cleansing, juga dikenal sebagai data cleansing, ini adalah sebuah fase dimana data-data tidak lengkap, mengndung error dan tidk konsisten dibuang dari koleksi data, sehingga data yang telah bersih relevan dapat digunakan untuk diproses ulang untuk penggalian pengetahuan(discovery knowledge)
  2. Data Integration, pada tahap ini terjadi integrasi data,dimana sumber-sumber data yang berulang(multiple data), file-file yang berulang(multiple file), dapat dikombinasikan dan digabungkan kedalam suatu sumber.
  3. Data Selection, pada langkah ini, data yang relevan terhadap analisis dapat dipilih dan diterima dari koleksi data yang ada.
  4. Data Transformation, juga dikenal sebagai data consolidation. Pada tahap ini, dimana data-data yang telah terpilih, ditransformasikan kedalam bentuk-bentuk yang cocok untuk prosedur penggalian (meaning proedure) dengan cara melakukan normalisasi dan agregasi data.
  5. Data Mining, tahap ini adalah tahap yang paling penting, dengan menggunakan teknik-teknik yang diaplikasikan untuk mengekstrak pola-pola potensial yang berguna.
  6. Pattern Evaluation, pada tahap ini, pola-pola menarik dengan jelas mempresentasikan pengetahuan telah diidentifikasi berdasarkan measure yang telah diberikan.
  7. Knowledge Representation, ini merupakan tahap terakhir dimana pengetahuan yang telah ditemukan secara visual ditampilkan kepada user.Tahap penting ini menggunakan teknik visualisasi untuk membantu user dalam mengerti dan menginterpresentasikan hasil dari data mining.




Post a Comment